De novo prediction of three-dimensional structures for major protein families.
نویسندگان
چکیده
We use the Rosetta de novo structure prediction method to produce three-dimensional structure models for all Pfam-A sequence families with average length under 150 residues and no link to any protein of known structure. To estimate the reliability of the predictions, the method was calibrated on 131 proteins of known structure. For approximately 60% of the proteins one of the top five models was correctly predicted for 50 or more residues, and for approximately 35%, the correct SCOP superfamily was identified in a structure-based search of the Protein Data Bank using one of the models. This performance is consistent with results from the fourth critical assessment of structure prediction (CASP4). Correct and incorrect predictions could be partially distinguished using a confidence function based on a combination of simulation convergence, protein length and the similarity of a given structure prediction to known protein structures. While the limited accuracy and reliability of the method precludes definitive conclusions, the Pfam models provide the only tertiary structure information available for the 12% of publicly available sequences represented by these large protein families.
منابع مشابه
PROCARB: A Database of Known and Modelled Carbohydrate-Binding Protein Structures with Sequence-Based Prediction Tools
Understanding of the three-dimensional structures of proteins that interact with carbohydrates covalently (glycoproteins) as well as noncovalently (protein-carbohydrate complexes) is essential to many biological processes and plays a significant role in normal and disease-associated functions. It is important to have a central repository of knowledge available about these protein-carbohydrate c...
متن کاملAb-initio Prediction of the 3-dimensional Structure of a De-novo Designed Protein: a Double Blind Case Study
In this work, the results of a double blind study are presented in which a new ab initio method was successfully used to predict the three dimensional structure of a protein designed through an experimental approach using binary patterned combinatorial libraries of de novo sequences. The predicted structure, which was produced before the experimental structure was known, and the final NMR analy...
متن کاملLarge-scale determination of previously unsolved protein structures using evolutionary information
The prediction of the structures of proteins without detectable sequence similarity to any protein of known structure remains an outstanding scientific challenge. Here we report significant progress in this area. We first describe de novo blind structure predictions of unprecendented accuracy we made for two proteins in large families in the recent CASP11 blind test of protein structure predict...
متن کاملAutomated prediction of domain boundaries in CASP6 targets using Ginzu and RosettaDOM.
Domain boundary prediction is an important step in both experimental and computational protein structure characterization. We have developed two fully automated domain parsing methods: the first, Ginzu, which we have described previously, utilizes information from homologous sequences and structures, while the second, RosettaDOM, which has not been described previously, uses only information in...
متن کاملRecent developments in structural proteomics for protein structure determination.
The major challenges in structural proteomics include identifying all the proteins on the genome-wide scale, determining their structure-function relationships, and outlining the precise three-dimensional structures of the proteins. Protein structures are typically determined by experimental approaches such as X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. However, the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular biology
دوره 322 1 شماره
صفحات -
تاریخ انتشار 2002